Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
نویسندگان
چکیده
A series of previously-synthesized lactic/glycolic acid polymers (PLGA) with various molar ratios of lactic to glycolic acid and various molecular weights were further studied with regard to their biodegradation behavior, and in particular, the factors affecting the biodegradation rate. The biodegradation of PLGA is affected by many factors including polymer composition, molecular weight, and nature of the incubating media. The biodegradation rate of PLGA containing higher content of lactic acid moiety is lower than those containing a lower content of lactic acid moiety. PLGAs with a higher molecular weight, degrade faster than those with a lower molecular weight, i.e. the molecular weight decreases more rapidly for higher molecular weight PLGAs than their lower molecular weight counterparts. Nature or properties of the hydrolysis/incubating media may have an effect on the biodegradation of PLGAs. A basic medium may slow down the biodegradation of PLGA in comparison with samples in an acidic medium. The rate of pH reduction for the incubating medium can be divided into three deferent phases, giving an inverted S-type pH profile for the non-buffered incubating media.
منابع مشابه
Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
A series of lactic/glycolic acid polymers with various molar ratios of lactic to glycolic acid and various molecular weights were synthesized using the ring-opening polymerization method. The polymerization conditions for the lactic/glycolic acid polymer synthesis were as follows: 150 degrees C, 700 microm Hg, 3 h, 0.03 wt% of catalyst (stannous 2-ethyl-hexanoate) concentration. The molecular w...
متن کاملPoly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges
Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...
متن کاملAn Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering
Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biologica...
متن کاملBiodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation
Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of...
متن کاملPlga: a Polymer of Choice as Nanocarrier’s to Achieve Effective Delivery of Medicinal Substances
Poly (D,L-lactide-co-glycolic acid) the first synthetic biodegradable polymer used in surgery as resorbabe material, is also approved by USFDA for use in drug delivery. The nanoparticle composed of PLGA can be used for both controlled and targeted drug delivery. There are various grades of PLGA which are having different biodegradation characteristics such as degradation takes place in several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomaterials science. Polymer edition
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2001